Update degli Studi Practice Changing 2022

EVIDENCE AND PRACTICE CHANGING TREATMENTS IN HEAD AND NECK TUMORS

Anna Merlotti

S.C. di Radioterapia A.S.O. S.Croce e Carle Cuneo

ROMA 26 GENNAIO 2023

Update degli Studi Practice Changing 2022

Conflitti di interesse: nessuno

Rinofaringe

- 1. IMRT sola vs IMRT-CHT per stadio II
- 2. Elective upper nodal irradiation
- Head and neck weekly cisplatin
- Orofaringe
- Dose-escalated CRT vs control in high risk OPC (CompARE ph III trial)

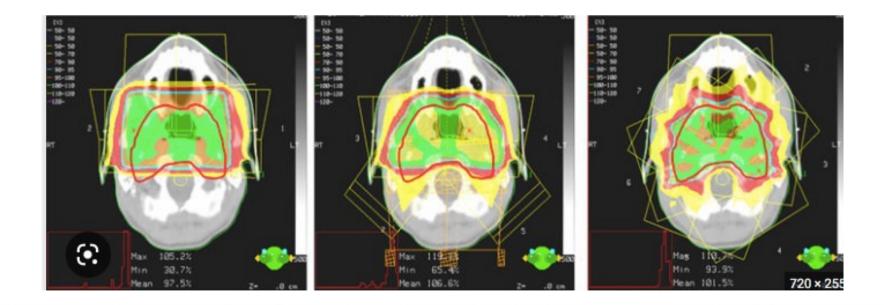
Rinofaringe

- 1. IMRT sola vs IMRT-CHT per stadio II
- 2. Elective upper nodal irradiation
- Head and neck weekly cisplatin
- Orofaringe
- 1. Dose-escalated CRT vs control in high risk OPC (CompARE ph III trial)

Update degli Studi Practice Changing 2022

Presented at ASCO meeting 2022

JAMA | Original Investigation


Effect of Radiotherapy Alone vs Radiotherapy With Concurrent Chemoradiotherapy on Survival Without Disease Relapse in Patients With Low-risk Nasopharyngeal Carcinoma A Randomized Clinical Trial

Ling-Long Tang, MD; Rui Guo, MD; Ning Zhang, MD; Bin Deng, MD; Lei Chen, MD; Zhi-Bin Cheng, MD; Jing Huang, MD; Wei-Han Hu, MD; Shao Hui Huang, MD; Wei-Jun Luo, MD; Jin-Hui Liang, MD; Yu-Ming Zheng, MD; Fan Zhang, MD; Yan-Ping Mao, MD; Wen-Fei Li, MD; Guan-Qun Zhou, MD; Xu Liu, MD; Yu-Pei Chen, MD; Cheng Xu, MD; Li Lin, MD; Qing Liu, MD, PhD; Xiao-Jing Du, MD; Yuan Zhang, MD; Ying Sun, PhD; Jun Ma, MD

Update degli Studi Practice Changing 2022

Presupposto:

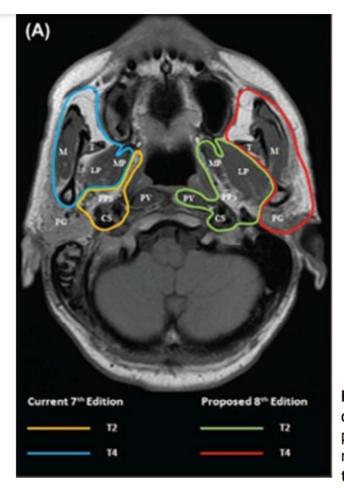
Concurrent chemoradiotherapy has been the standard treatment for stage II NPC based on data using 2D-RT. There is limited evidence for the role of chemotherapy with use of IMRT.

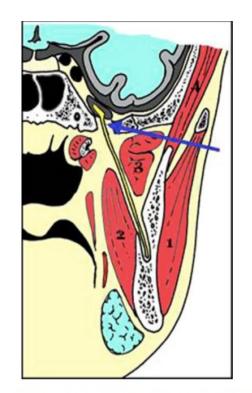
HLIGHI	Oral Oncology 51 (2015) 1041–1046				e Changing 2022			
1	IMR	г	Contr	ol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% CI	M-H, Fixed, 95% Cl	
(A) 5-year OS								
Fang et al. 2008	82	110	74	93	14.2%	0.75 [0.39, 1.46]		
Moretto et al. 2014	21	26	20	26	2.7%	1.26 [0.33, 4.79]		
Peng et al. 2012	244	306	208	310	29.1%	1.93 [1.34, 2.78]	-	
Zhou et al. 2013	421	506	573	747	54.0%	1.50 [1.13, 2.01]	-	
Total (95% CI)		948		1176	100.0%	1.51 [1.23, 1.87]	•	5y 05
Total events	768		875					
Heterogeneity: Chi ² =	6.06, df =	3 (P = ().11); l ² =	50%				
Test for overall effect:	Z = 3.87 (P = 0.0	001)					
(B) 5-year LC								
Lai et al. 2011	475	512	663	764	37.2%	1.96 [1.32, 2.90]	-	
Moretto et al. 2014	23	26	19	26	2.1%	2.82 [0.64, 12.44]		
Peng et al. 2012	277	306	260	310	23.7%	1.84 [1.13, 2.99]		
Zhou et al. 2013	469	506	648	747	37.0%	1.94 [1.30, 2.88]	-	
Total (95% CI)		1350		1847	100.0%	1.94 [1.53, 2.46]	•	5y LC
Total events	1244	10000	1590				5	-,
Heterogeneity: Chi2 =		3 (P = (0%			0.01 0.1 1 10	100

Fig. 2. Forest plot of the comparison between IMRT and 2D-RT/3D-CRT for 5-year OS and LC.

Journal of Cancer 2017, Vol. 8 IVYSPRING

Research Paper


Chemoradiotherapy Versus Radiotherapy Alone in Stage II Nasopharyngeal Carcinoma: A Systemic Review and Meta-analysis of 2138 Patients


Cheng Xu¹*, Li-He Zhang¹*, Yu-Pei Chen¹*, Xu Liu¹, Guan-Qun Zhou¹, Ai-Hua Lin², Ying Sun¹, Jun Ma^{1⊠}

In the treatment of patients with stage II NPC (TNM V, VI, VII, Chinese 1992 staging system), CRT was better than 2D-RT alone with significant benefit in LRRFS. IMRT alone could achieve equivalent OS, LRRFS and DMFS compared to CRT with fewer grade 3-4 acute toxicities.

Update degli Studi Practice Changing 2022

The 7th AJCC	The 8th AJCC [±]	The Chinese 1992 staging system	
T1: Nasopharynx, oropharynx or nasal cavity	T1. Nasopharynx, oropharynx, nasal fossa	T1: Nasopharynx	
T2: Parapharyngeal extension	T2. Parapharyngeal extension, prevertebral, medial and lateral pterygoid muscles	T2: Oropharynx, nasal cavity, parapharyneal extension, medial and lateral pterygoid muscles	
T3: Bony structures and/or paranasal sinuses	T3. Bony structure (skull base, cervical vertebra), paranasal sinuses	T3: Bony structures, paranasal sinuses	
T4: Intracranial extension and/or cranial nerves, hypopharynx, orbit, or infratemporal fossa/masticatory space	T4. Intracranial extension, cranial nerve, hypopharynx, orbit, involvement beyond the lateral surface of lateral pterygoid muscle, parotid gland)	T4: Intracranial extension and/or cranial nerves, infratemporal fossa, hypopharynx, orbit, or masticatory space excluding medial and lateral pterygoid muscles	

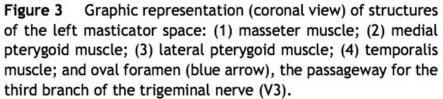
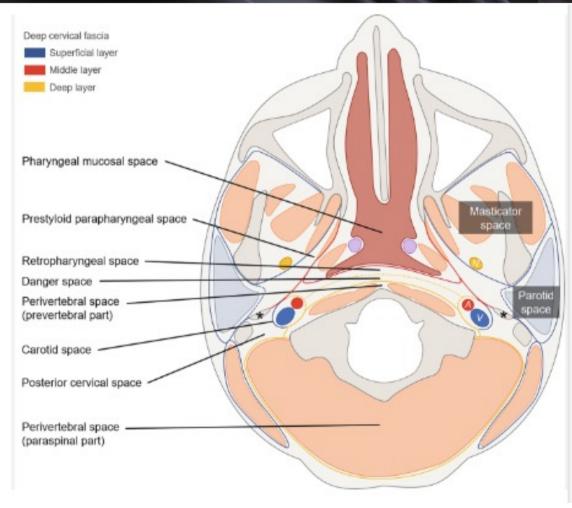
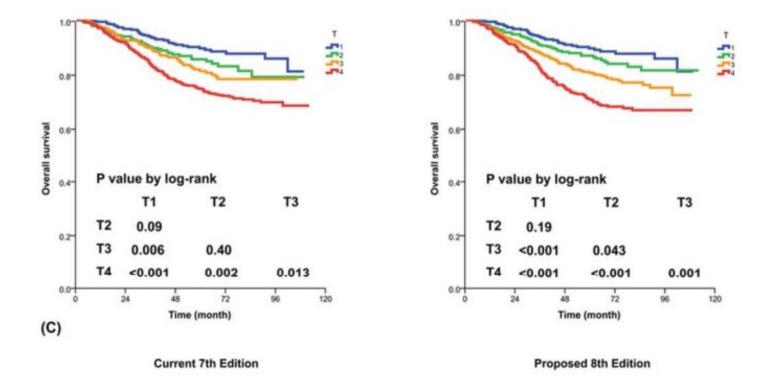



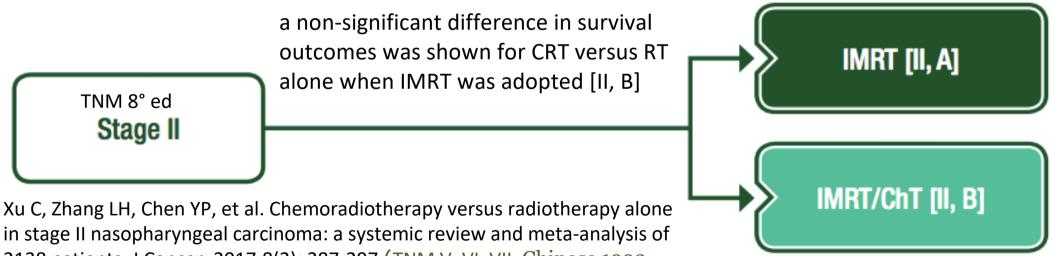
FIGURE 2. Differences in defining criteria between Current 7th Edition to the Proposed 8th Edition regarding (A) changing the extent of soft tissue involvement as T2 and T4 criteria. Abbreviation: CS= carotid space, LP= lateral pterygoid muscle, M= masseter muscle, MP= medial pterygoid muscle, PG= parotid gland, PPS= parapharyngeal space, PV= prevertebral muscle, T= temporalis muscle, (B) replacing supraclavicular fossa (blue) by lower neck i.e. below caudal border of cricoid cartilage (red) as N3 criteria. 18x13mm (600 x 600 DPI)


Update degli Studi Practice Changing 2022

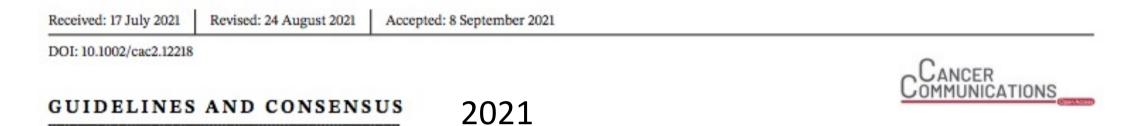
Masticator space primarily consists of the muscles of mastication. Anatomically, the superficial layer of the deep cervical fascia splits to enclose the muscles of mastication to enclose this space. These muscles are the medial and lateral pterygoid, masseter, and temporalis.

Proposal for the 8th edition of the AJCC/UICC staging e degli Studi Practice Changing 2022 system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy

Jian Ji Pan¹², Wai Tong Ng³, Jing Feng Zong¹², Lucy L K Chan³, Brian O'Sullivan⁴,



SPECIAL ARTICLE


Epub Dic 2020

Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

in stage II nasopharyngeal carcinoma: a systemic review and meta-analysis of 2138 patients. J Cancer. 2017;8(2): 287-297 (TNM V, VI, VII, Chinese 1992 staging system)

Update degli Studi Practice Changing 2022

The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma

Ling-Long Tang¹ | Yu-Pei Chen¹ | Chuan-Ben Chen² | Ming-Yuan Chen³

These guidelines use the 8th edition of the AJCC TNM staging system

Update degli Studi Practice Changing 2022

T2N0	Radiotherapy alone [101] (evidence 2B)	Concurrent chemoradiotherapy [102, 103] (with poor prognostic factors, such as large tumor volume or high EBV DNA copy number) (evidence 2A)	
T1-2N1	Concurrent chemoradiother- apy [102, 103] (evidence 2A)	Radiotherapy alone [101] (evidence 2A)	

HIGH

Chemotherapy in Combination With Radiotherapy ASC for Definitive-Intent Treatment of Stage II-IVA special arti **Nasopharyngeal Carcinoma: CSCO and** ASCO Guideline J Clin Oncol 39:840-859. © 2021

Yu-Pei Chen, MD¹; Nofisat Ismaila, MD²; Melvin L. K. Chua, MD PhD³; A. Dimitrios Colevas, MD⁴; Robert Haddad, MD⁵;

Shao Hui Huang, MD, MRT(T)⁶; Joseph T. S. Wee, MD³; Alexander C. Whitley, MD⁷; Jun-Lin Yi, MD⁸; Sue S. Yom, MD⁹;

Anthony T. C. Chan, MD¹⁰; Chao-Su Hu, MD¹¹; Jin-Yi Lang, MD¹²; Quynh-Thu Le, MD⁴; Anne W. M. Lee, MD¹³; Nancy Lee, MD¹⁴;

Jin-Ching Lin, MD¹⁵; Brigette Ma, MD¹⁰; Thomas J. Morgan, MR¹⁶; Jatin Shah, MD¹⁴; Ying Sun, MD¹; and Jun Ma, MD¹

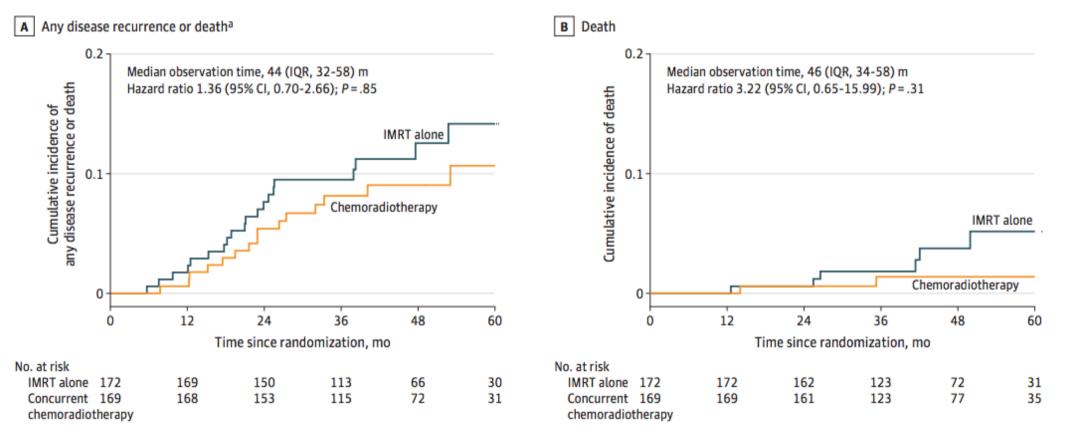
T2N0 (AJCC 8th)= CHT is not routinely recommended, (except with adverse features, such as bulky tumor volumes or high EBV DNA copy number) (Type: evidence based; harms outweigh benefits; Evidence quality: intermediate; Strength of recommendation: moderate). T1-2N1 (AJCC 8th) = CRT may be offered, particularly for T2 N1 patients (Type: evidence based; benefits outweigh harms; Evidence quality: intermediate; Strength of recommendation: moderate).

JAMA | Original Investigation Presented at ASCO meeting 2022 Effect of Radiotherapy Alone vs Radiotherapy With Concurrent Chemoradiotherapy on Survival Without Disease Relapse in Patients With Low-risk Nasopharyngeal Carcinoma A Randomized Clinical Trial

Ling-Long Tang, MD; Rui Guo, MD; Ning Zhang, MD; Bin Deng, MD; Lei Chen, MD; Zhi-Bin Cheng, MD; Jing Huang, MD; Wei-Han Hu, MD; Shao Hui Huang, MD; Wei-Jun Luo, MD; Jin-Hui Liang, MD; Yu-Ming Zheng, MD; Fan Zhang, MD; Yan-Ping Mao, MD; Wen-Fei Li, MD; Guan-Qun Zhou, MD; Xu Liu, MD; Yu-Pei Chen, MD; Cheng Xu, MD; Li Lin, MD; Qing Liu, MD, PhD; Xiao-Jing Du, MD; Yuan Zhang, MD; Ying Sun, PhD; Jun Ma, MD

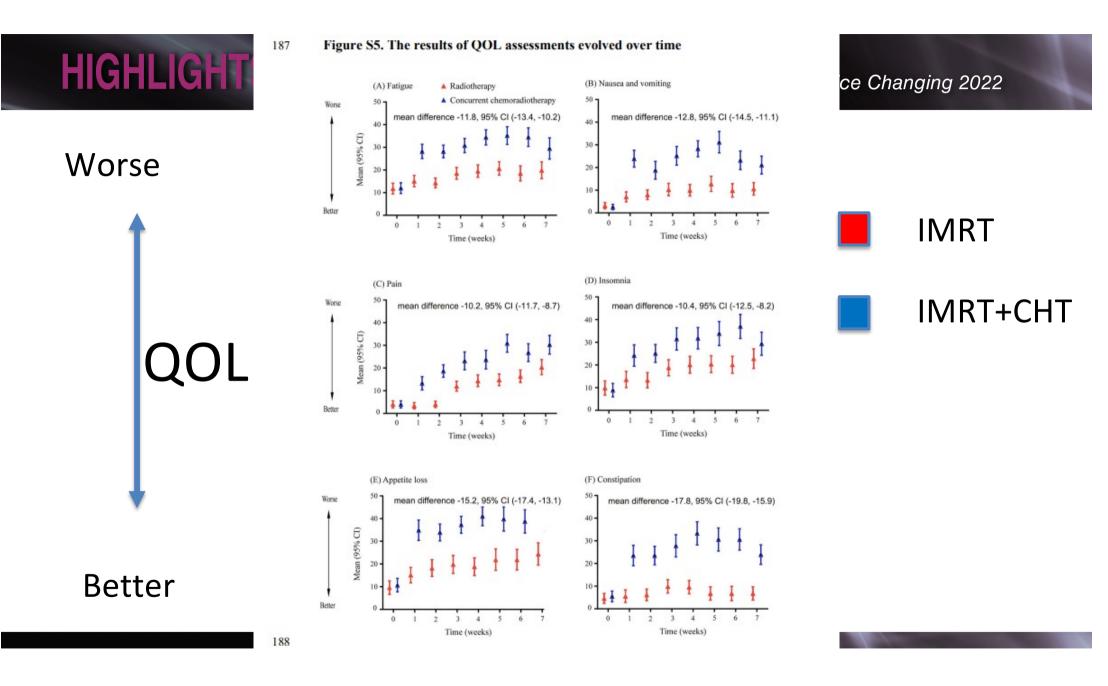
Multicenter phase 3, non-inferiority clinical trial was conducted at 5 Chinese hospitals, including 341 adult patients with low-risk NPC, defined as stage II/T3NOMO without adverse features (no low neck N, all N < 3 cm, no ENE, < 4000 copies/ml EBV DNA) This trial used 7th edition TNM!

- 18F-FDGPET–CT examination was carried out following local practices
- cisplatin was administered concurrently with radiotherapy at 100mg/m2 every 3 weeks for 3 cycles. All patients underwent IMRT
- The recommended prescribed dose was 68 to 70 Gy at 2.0 to 2.2 Gy per fraction administered (once per day, 5 fractions every week)
- The primary end point was 3-year failure-free survival
- The secondary end points was OS, LRRFS, DMFS, safety, and healthrelated QOL.
- 341 pts, 97.5% were EBV+
- Median f-up 46 months


Compliance in the IMRT-alone group: 95.9%

Compliance in the CRT group: 60.4% received 3 cycles of concurrent cisplatin, 36.7% received 2 cycles, and 3.0% received 1 cycle

Update de


Update degli Studi Practice Changing 2022

The primary outcome 3y FFS in the IMRT-alone vs CRT groups was 90.5% vs 91.9% (difference, -1.4%, which met the non-inferiority criterion)

Update degli Studi Practice Changing 2022

Locoregional relapse or death С D Distant metastasis or death 0.2 -0.2-Median observation time, 44 (IQR, 32-58) m Median observation time, 45 (IQR, 34-58) m Hazard ratio 1.27 (95% CI, 0.58-2.80); P = .43 Hazard ratio 2.15 (95% CI, 0.64-7.15); P = .22 locoregional relapse or death Cumulative incidence of distant metastasis or death Cumulative incidence of 0.1 0.1 IMRT alone Chemoradiotherapy IMRT alone Chemoradiotherapy n 0 36 24 0 12 24 48 60 12 36 48 60 0 Time since randomization, mo Time since randomization, mo No. at risk No. at risk 171 67 IMRT alone 172 154 116 30 IMRT alone 172 170 157 119 70 31 73 122 76 Concurrent 169 169 155 116 32 Concurrent 169 168 159 34 chemoradiotherapy chemoradiotherapy

significantly lower incidence of grade 3 or 4 hematological toxicities and nonhematological toxicities in the IMRT-alone group

ACUTE TOX²² Group, No. (%)b IMRT alone (n = 165)Concurrent chemoradiotherapy (n = 169)

	INIKI atone ((1 - 105)	concurrent chemoradiotherapy (ii = 109)		
ent ^a	Grade 1/2	Grade 3/4	Grade 1/2	Grade 3/4	
Nonhematologic					
Mucositis	116 (70)	16 (10)	113 (67)	32 (19)	
Dry mouth	33 (20)	0	50 (30)	0	
Dermatitis	31 (19)	0	54 (32)	0	
Weight loss	28 (17)	1 (1)	94 (56)	8 (5)	
Anorexia	22 (13)	8 (5)	28 (17)	49 (29)	
Vomiting	14 (8)	2 (1)	48 (28)	25 (15)	
Nausea	14 (8)	1(1)	57 (34)	22 (13)	
Dysphagia	5 (3)	1 (1)	22 (13)	3 (2)	
Fever	0	0	0	1 (1)	

HIGHLIGHTS in RADIOTERAPIA LATE TOX

pdate degli Studi Practice Changing 2022

	Group, No. (%) ^b					
	IMRT alone ((n = 165)	Concurrent chemoradiotherapy (n = 169)			
vent ^a	Grade 1/2	Grade 3/4	Grade 1/2	Grade 3/4		
ate toxicities						
Dry mouth	90 (55)	0	96 (57)	1 (1)		
Auditory/hearing	66 (40)	1 (1)	80 (47)	1 (1)		
Skin/neck tissue damage	35 (21)	1 (1)	50 (30)	0		
Hypothyroidism	31 (19)	4 (2)	60 (36)	1 (1)		
Peripheral neuropathy	6 (4)	0	17 (10)	0		
Temporal lobe injury	6 (4)	0	6 (4)	0		
Trismus	3 (2)	0	3 (2)	0		
Bone necrosis	1 (1)	0	0	0		

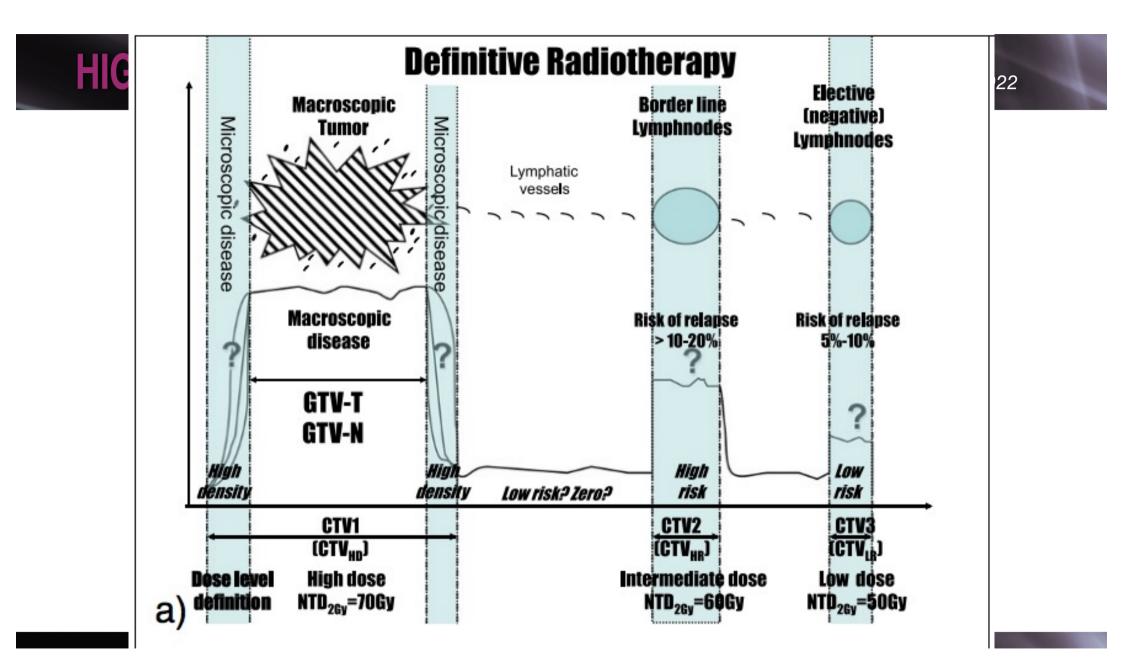
Update degli Studi Practice Changing 2022

CAUTION !

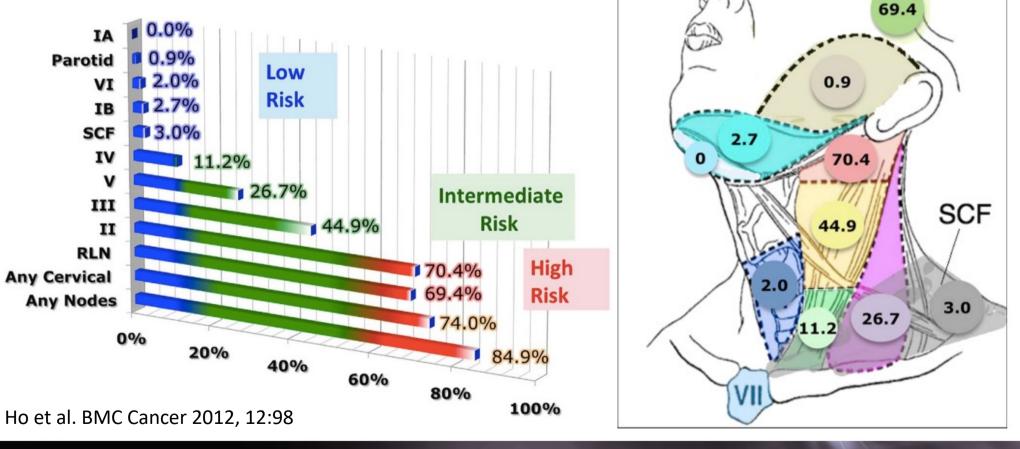
- Epstein-Barr virus DNA cutoff of greater than 4000 copies/mL was an exclusion criterion. This cutoff may not be applicable to all other centers without international harmonization of Epstein-Barr virus DNA assays.
- This trial used 7th edition TNM. Rare occasions (<5%) in which the 7th edition T4 with adjacent soft tissue extension would be reclassified as T2 in the 8th edition. Caution is needed to apply the trial's findings to such cases.

T2N0 Radiotherapy alone [101] (evidence 2B)	Concurrent chemoradiotherapy [102, 103] (with poor prognostic factors, such as large tumor volume or high EBV DNA copy number) (evidence 2A)	DOI: 10.1002/cac2.12218 GUIDELINES AND CONSENSUS The Chinese Society of guidelines for the dia nasopharyngeal carci	of Clinical Oncology (CSCO) clinical gnosis and treatment of noma hen ¹ Chuan-Ben Chen ² Ming-Yuan Chen ³ ^(a)
T1-2N1 Concurrent chemoradiother apy [102, 103] (evidence 2A)	Radiotherapy alone [101] (evidence 2A)	vidence 1A	
Staging group ^d			
T2N0	28 (16)	21 (12)	
T3N0	43 (25)	44 (26)	
T1N1	36 (21)	33 (20)	
T2N1	65 (38)	71 (42)	

Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: an open-label, non-inferiority, multicentre, randomised phase 3 trial


Ling-Long Tang*†, Cheng-Long Huang*, Ning Zhang*, Wei Jiang*, Yi-Shan Wu*, Shao Hui Huang, Yan-Ping Mao, Qing Liu, Ji-Bin Li, Shao-Qiang Liang, Guan-Jie Qin, Wei-Han Hu, Ying Sun, Fang-Yun Xie, Lei Chen†, Guan-Qun Zhou†, Jun Ma†

to assess whether elective upper-neck irradiation (UNI) of the uninvolved neck (including patients with both NO and N1 disease) was non-inferior to standard whole-neck irradiation (WNI) in 446 non keratinizing NP pts Median follow up of 53 months


Update degli Studi Practice Changing 2022

Only one other randomised clinical trial (Cancer. 2013 Sep 1;119(17):3170-6) comparing upper-neck irradiation versus standard whole-neck irradiation in NO NPC, showed a similar proportion of regional control and survival between the two treatment groups.

BUT: single institution
2/3 2D RT
No QoL data
Only N0 pts (rare presentation)

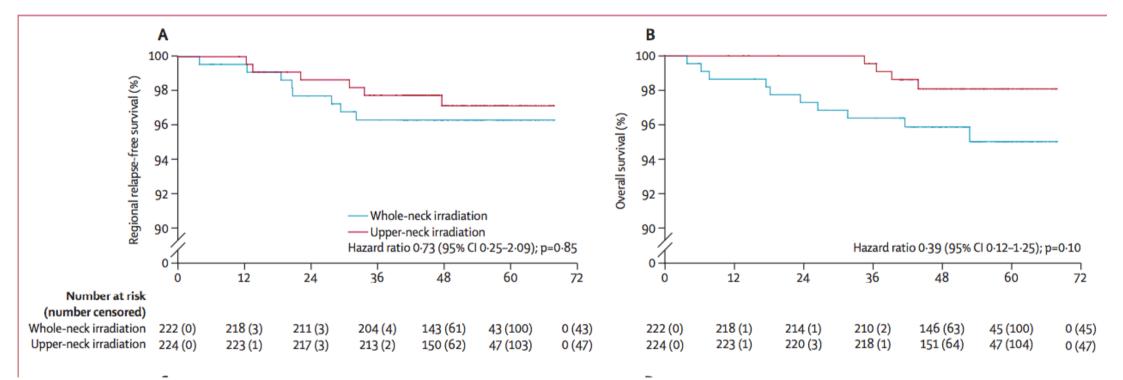
Lymphatic spread in cervical nodal chain from NPC primary follows an orderly fashion. There is a very low risk of 0.5% in skip nodal metastasis

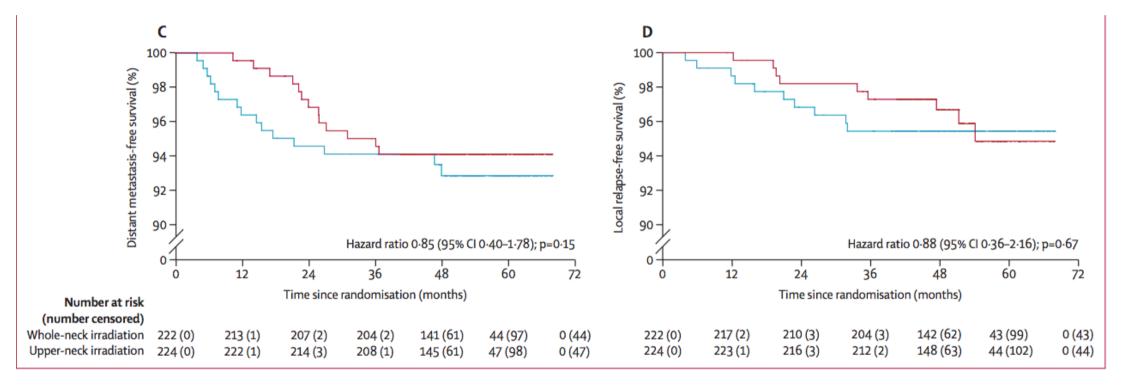
Update degli Studi Practice Changing 2022

RT to all levels of cervical lymph nodes from IB to V, including the supraclavicular might represent over-treatment using the current diagnostic and therapeutic technology.

A meta-analysis by Huang and colleagues (Radiat Oncol 2018;13:141) showed the feasibility of ipsilateral lower neck sparing RT for unilateral or bilateral neck node-negative NPC patients.

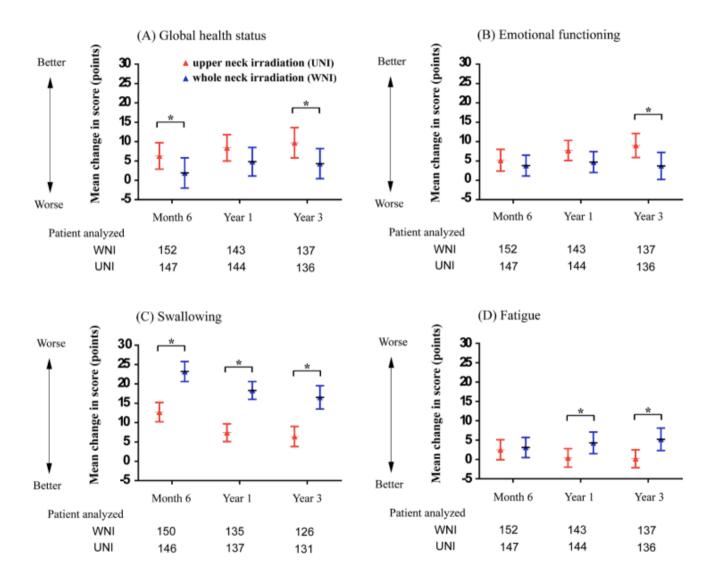
Neck nodes are probably an important source for the production of an immune response to the primary tumor


Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: an open-label, non-inferiority, multicentre, randomised phase 3 trial

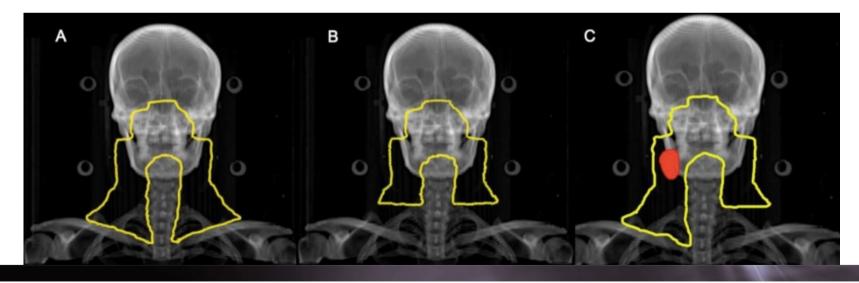

Ling-Long Tang*†, Cheng-Long Huang*, Ning Zhang*, Wei Jiang*, Yi-Shan Wu*, Shao Hui Huang, Yan-Ping Mao, Qing Liu, Ji-Bin Li, Shao-Qiang Liang, Guan-Jie Qin, Wei-Han Hu, Ying Sun, Fang-Yun Xie, Lei Chen†, Guan-Qun Zhou†, Jun Ma†

to assess whether elective upper-neck irradiation (UNI) of the uninvolved neck (including patients with both NO and N1 disease) was non-inferior to standard whole-neck irradiation (WNI) in 446 non keratinizing NP pts Median follow up of 53 months, **3-year RRFS =** in both arms. **Acute toxicities =** in both groups Late toxicities < in UNI (less hypothyroidism, dysphagia, skin toxicities and soft tissue damage).

Update degli Studi Practice Changing 2022



Update degli Studi Practice Changing 2022



nging 2022

Is this high-level evidence, supporting UNI (upper neck irradiation) as a valid option to be considered in future treatment guidelines for NPC patients with NO–N1 stage disease, feasible in the case of IMPT delivery? De Felice F et al. J Clin Med 2022;11:3297

Spared unilateral lower neck would also receive a scattered dose (mean dose of 22 Gy in Tang trial)

A phase II study of Lower-Neck Sparing ProtOn Therapy in NAsopharyngeal Carcinoma Patients with Uninvolved NecK (SPONAPUNK)

To estimate the 2-year RFS rate with IMPT de-escalated volumes strategy (UNI) in a cohort of patients with T1-T3 N0 NPC treated at CNAO compared to historical data from non-endemic area.

Ester.orlandi@cnao.it

National Center for Oncological Hadrontherapy (CNAO)

- Rinofaringe
- 1. IMRT sola vs IMRT-CHT per stadio II
- 2. Elective upper nodal irradiation
- Head and neck weekly cisplatin
- Orofaringe
- 1. Dose-escalated CRT vs control in high risk OPC (CompARE ph III trial)

Survival and toxicity of weekly cisplatin chemoradiotherapy versus three-weekly cisplatin chemoradiotherapy for head and neck cancer: A systematic review and meta-analysis endorsed by the Italian Association of Radiotherapy and Clinical Oncology (AIRO)

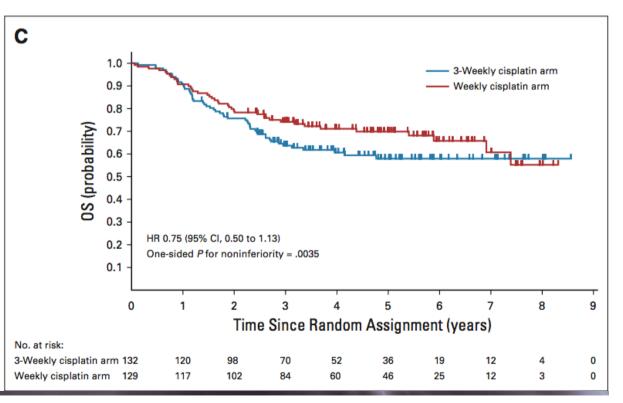
Francesca De Felice ^{a, *, 1}, Liliana Belgioia ^{b, 1}, Daniela Alterio ^c, Pierluigi Bonomo ^d, Marta Maddalo ^e, Fabiola Paiar ^f, Nerina Denaro ^g, Renzo Corvò ^b, Anna Merlotti ^h, Paolo Bossi ⁱ, Giovanni L. Pappagallo ^j, Rolando M. D' Angelillo ^k, Stefano M. Magrini ^{e, 2}, Stefano Arcangeli ^{1, 2}

Weekly cisplatin is not associated with better clinical outcomes compared to threeweekly cisplatin. Three-weekly cisplatin chemoradiotherapy should be considered the standard approach in the management of locally advanced head and neck cancer. Methodologically robust RCTs designs are needed to improve the quality of evidence. Differences on long-term toxicity and cost-effectiveness remain to be tested.

Quesito 3: Nei pazienti con tumore testa e collo operati candidati a trattamento chemioradioterapico concomitante postoperatorio e fit per cisplatino concomitante, è indicata una schedula settimanale rispetto a quella trisettimanale?

Qualità globale delle prove	Raccomandazione clinica	Forza della raccomandazione
Moderata	Nei pazienti con carcinoma a cellule squamose del distretto testa-collo localmente avanzato candidabile a trattamento chemioradioterapico concomitante come trattamento curativo e fit per utilizzo di cisplatino concomitante alla radioterapia, la schedula settimanale di cisplatino non dovrebbe essere presa in considerazione come alternativa alla schedula trisettimanale, tranne nel setting postoperatorio dove non dovrebbero essere prese in considerazione schedule settimanali con dosaggio di 30 mg/mq o inferiori (73).	Condizionata a sfavore

Weekly Cisplatin Plus Radiation for


Practice Changing 2022

origina **Postoperative Head and Neck Cancer** J Clin Oncol 40:1980-1990. © 2022 b (JCOG1008): A Multicenter, Noninferiority, Presentato ad ASCO 2020 repor Phase II/III Randomized Controlled Trial

Naomi Kiyota, MD, PhD¹; Makoto Tahara, MD, PhD²; Junki Mizusawa, ME³; Takeshi Kodaira, MD⁴; Hirofumi Fujii, MD⁵;

28 institutions in Japan

261 postoperative high-risk patients. Median follow-up was 2.2 years noninferiority margin of HR of 1.32. The primary end point of the phase II part was the proportion of treatment completion among all eligible patients. The primary end point of the phase III part was OS, and secondary end points were relapse-free survival (RFS), local relapse-free survival, nutrition support-free survival, nonhospitalized treatment period during the permissible treatment period, and adverse events (AEs).

	3-Weekly Cisplatin ($n = 129$), No. (%)		Weekly Cisplatin ($n = 122$), No. (%)		
Adverse Event	Any Grade	Grade 3-4	Any Grade	Grade 3-4	
Hematologic					
Anemia	129 (100)	18 (14)	122 (100)	16 (13)	
Leukocytopenia	123 (95)	71 (55)	114 (93)	75 (62)	
Neutropenia	118 (92)	63 (49)	106 (87)	43 (35)	
Thrombocytopenia	85 (66)	3 (2)	102 (84)	4 (3)	
Creatinine increased	51 (40)	0 (0)	36 (30)	0 (0)	
Fatigue	50 (39)	5 (4)	41 (34)	1 (1)	
Hypokalemia	46 (36)	7 (5)	25 (21)	3 (3)	
Tinnitus	32 (25)	0 (0)	6 (5)	0 (0)	
Hypermagnesemiaa	26 (20)	3 (2)	10 (8)	1 (1)	
Diarrhea	— only around 60% of patients completed 3 CDDP				
Infection		In practice, this would allow for a possible 32% decrease in			
Fever	· · · · ·				
Alopecia	risk of death i	risk of death in chemoradiotherapy with weekly cisplatin			
Vomiting	22 (17)	1 (1)	16 (13)	0 (0)	
Hearing disturbance	22 (17)	5 (4)	9 (7)	2 (2)	

Meeting Abstract | 2022 ASCO Annual Meeting I

HEAD AND NECK CANCER

An open-label, noninferiority phase III RCT of weekly versus three weekly cisplatin and radical radiotherapy in locally advanced head and neck squamous cell carcinoma (ConCERT trial).

Update degli Studi Practice Changing 2022

Check for updates

Atto Sharma, Manish Kumar, Suman Bhasker, Alok Thakar, Raja Pramanik, Ahitagni Biswas, ...

Randomized trial from India, looking at q3 week high dose cisplatin (T), compared to a weekly schedule with 40 milligrams per meter squared (W). Primary endpoint: 2year LRC. Both postoperative and definitive patients. 70% of the patients in each arm treated with 2D RT on cobalt machine.

278 pts

HIGHLIGHTS in RADIOTERAPIA

Update degli Studi Practice Changing 2022

Cumulative 2 year LRC rates were 52.6% in T and 47.4% in W (log-rank p=0.426; HR 0.86 [95%CI: 0.60-1.23]) by parametric survival estimates with an absolute difference of 5.2% (95%CI= -7.7, 18.2) within pre defined margin of 10%.

overall survival for the high dose arm median was 30 months, 25.5 months in the 40 milligrams per meter squared arm. PFS 21.3 versus 20.8.

But... small study not adequately powered (56% patients got T, compared to 60.9% W, below the statistics)

- Rinofaringe
- 1. IMRT sola vs IMRT-CHT per stadio II
- 2. Elective upper nodal irradiation
- Head and neck weekly cisplatin
- Orofaringe
- Dose-escalated CRT vs control in high risk OPC (CompARE ph III trial)

Arm 3: 64Gy in 25 fractions with cisplatin over 5 weeks + Cisplatin 100mg/m2 week 1 and week 5 or 40mg/m2 weekly (Elective dose 50Gyain 25 fractions)

Centralised radiotherapy quality assurance programme

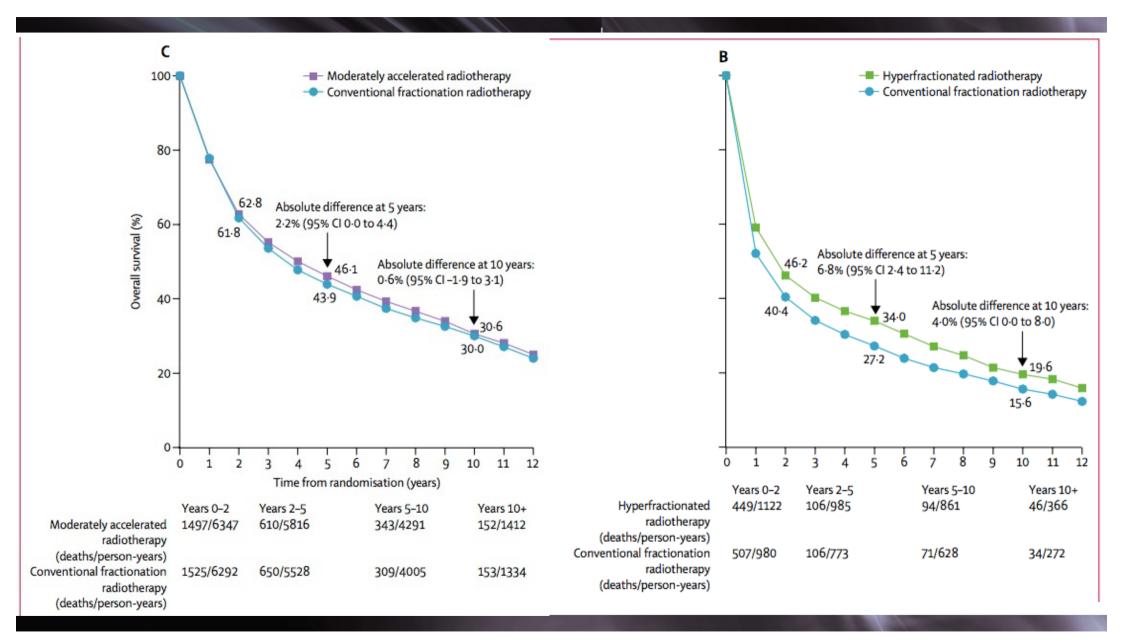
Primary outcome OS, interim outcome EFS.

72 control arm events are required to perform the first interim analysis. Secondary outcome toxicity (CTCAEv4.0), QoL, swallowing using MDADI and gastrostomy dependence. Analysis was by intention to treat.

Paul SANGHERA

HIGHLIGHTS in RADIOTERAPIA

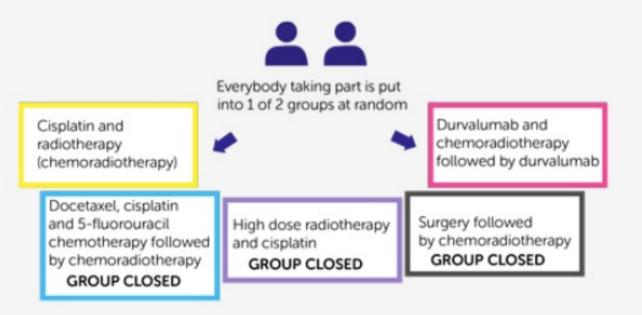
Update degli Studi Practice Changing 2022


Risk	Characteristics	3-year OS	
Low	HPV+, Non-Smoker	93%	
Low	HPV+, Smoker N0-2a	(95% CI, 88.3-97.7)	
Intermediate	HPV+, Smoker, N2b-3	71%	
Interneulate	HPV-, Non-Smoker T2-3	(95% CI, 60.7-80.8)	
Lliab	HPV-, Non-Smoker, T4	46%	
High	HPV-, Smoker	(95% CI, 34.7-57.7)	

- 257 patients (172 in Arm 1 and 85 in Arm 3)
- well balanced between the arms (80% intermediate risk 20% high risk).
- 97% patients received radiotherapy as planned for each arm.
- Median follow up 36.7 months (95% Cl. 27.6, 37.5).
- 3y EFS rate was 72% (95%CI 64-78%) in arm 1 and 68% (95% CI 56-78%) in arm 3, (p=0.98). Adjusted hazard ratio for arm 3 versus 1 was 1.00 (95/% CI 0.62, 1.62).
- Rates of gastrostomy tube use at 2 years were 5% and 9% in arms 1 and 3 respectively (p=0.35).
- Due to SAE Arm 3 has been stopped causing evaluation of OS underpowered
- Group of patients who benefit the most from hypofractionation has to be defined as well as the role of p16 status

MARCH

- 33 trials, 11 423 patients. Follow-up 7.9-10 y. Per lo più orofaringe e laringe; 5221 (74%) pazienti di stadio III-IV della malattia.
- significant benefit on overall survival for hyperfractionated group: absolute differences at 5 years of 8·1% (3·4 to 12·8) and at 10 years of 3·9% (-0·6 to 8·4).
- Altered fractionation radiotherapy absolute difference at 5 years of 3.1% (95% CI 1.3–4.9) and at 10 years of 1.2% (-0.8 to 3.2).


Lucas B. Et al. MARCH Collaborative Group (MARCH): an updated meta-analysis. Lancet Oncol. 2017 Sep;18(9):1221-1237

CompARE is a phase III randomised controlled trial using an adaptive, multiarm multi-stage design to evaluate alternative regimes for escalating treatment of intermediate and high risk oropharyngeal cancer (OPC).

People will be put into 1 of 4 treatment groups:

- cisplatin and radiotherapy (chemoradiotherapy)
- <u>docetaxel</u>, cisplatin and <u>5-fluorouracil</u> chemotherapy followed by chemoradiotherapy. Please note this group is now closed
- <u>high dose radiotherapy</u> and cisplatin. Please note this group is now closed
- surgery followed by chemoradiotherapy Please note this group is now closed
- durvalumab and chemoradiotherapy followed by durvalumab

